MLP 統計的学習理論 正誤表 & 補足

2016-10-14(Thu) by Kana

正誤表

 $\mathbf{p.11.}$ 15 **行目:** 「ぞれぞれ」 \rightarrow 「それぞれ」

 $\mathbf{p.14}$. 定義 $\mathbf{1.2}$ の式 $(\mathbf{1.4})$: 「=0」 \rightarrow 「=1」

 $\mathbf{p.31}$. 下から $\mathbf{5}$ 行目: 「 $\mathfrak{R}_S(\mathcal{G})$ 」 o 「 $\widehat{\mathfrak{R}}_S(\mathcal{G})$ 」

 $\mathbf{p.45}$. 1**行目:** 「凸関数とのとき」 \rightarrow 「凸関数のとき」

 $\mathbf{p.66}$, **定理 4.6 の 1 行目:** 「 \mathcal{X} 上カーネル関数」 \rightarrow 「 \mathcal{X} 上のカーネル関数」

p.82. 5.3.1 節: K_{ij} はグラム行列の要素 $K(x_i, x_j)$ を意味します.

p.84. 5.3.2 節 の 4 行目: 「 $SV = \{i : \alpha_i = 0\}$ 」 \rightarrow 「 $SV = \{i \mid \alpha_i = 0\}$ 」

 $\mathbf{p.91.}$ 補題 5.5 **の** 1 行目: 「 \mathcal{G} のラデマッハ複雑度」 \rightarrow 「 \mathcal{G} の経験ラデマッハ複雑度」

 $\mathbf{p.115}$. 4行目: 「ベクトル $e_\ell \in \mathbb{R}^T$ 」 \rightarrow 「ベクトル $e_\ell \in \mathbb{R}^M$ 」

p.119. 修正ニュートン法の更新規則と重みの箇所. $\lceil g_i'(\eta_i) \rfloor \rightarrow \lceil g'(\eta_i) \rfloor$

 $\mathbf{p.123}$. **定理 6.3 の 1 行目:** 「判別器 H =」 \rightarrow 「判別器 H(x) =」

 $\mathbf{p.142}$. 補題 7.8 の 1 行目: 「最適解は \widehat{f}_y 」 ightarrow 「最適解 \widehat{f}_y 」

 ${\bf p.142}$. 補題 7.8 証明の 3 行目: 「 Ψ 損失」 \to 「損失 Ψ 」

 $\mathbf{p.143}$. 下から3行目: 「次に $\widehat{R}_S(\mathcal{G}_y)$ 」 \to 「次に $\widehat{\mathfrak{R}}_S(\mathcal{G}_u)$ 」

 $\mathbf{p.165}$. 下から3行目: 「 $\sum_{i=1}^m$ 」ightarrow 「 $\sum_{j=1}^m$ 」

 $\mathbf{p.167}$. 下から 2 行目: 「 $\min_{x \in \mathbb{R}^d} L(x, \lambda)$ 」 \to 「 $\min_{x \in \mathbb{R}^d} L(x, \lambda)$ 」

 $\mathbf{p.168}$. 下から 10 行目: 「 $\sum_{i=1}^m$ 」 o 「 $\sum_{j=1}^m$ 」

 $\mathbf{p.171}$. **下から 2 行目:** 「定義され実数値関数」 \rightarrow 「定義された実数値関数」

補足

p.166. 下から 1 行目: $[u \ge h(x)]$ は、ベクトル u, h(x) の要素ごとに不等式が成立することを意味します.

 $\mathbf{p.44.}$ 下から 8 行目: 等式 $\mathbb{E}_X[H(\eta(X))] = R_\phi^*$ から導出されます.これは

$$\mathbb{E}_{X}\big[\inf_{\alpha\in\mathbb{R}}C_{\eta(X)}(\alpha)\,\big]=\inf_{f:\overline{\eta}|\mathbb{M}}\mathbb{E}_{X}\big[\,C_{\eta(X)}(f(X))\,\big]$$

と等価です. 「各点での下限の期待値 = 期待値の可測関数上での下限」を意味し、適当な条件の下で成立します.参考文献 [8] の p.52, Lemma 3.4 を参照のこと.

謝辞

筑波大学の日野先生,大阪大学の下平先生,慶應大学の小林先生に感謝します.